PERSPECTIVE

A Consumer’s Guide to Subgroup Analyses

Andrew D. Oxman, MD, and Gordon H. Guyatt, MD

B The extent to which a clinician should believe and
act on the results of subgroup analyses of data from
randomized trials or meta-analyses is controversial.
Guidelines are provided in this paper for making these
decisions. The strength of inference regarding a pro-
posed difference in treatment effect among subgroups
is dependent on the magnitude of the difference, the
statistical significance of the difference, whether the
hypothesis preceded or followed the analysis, whether
the subgroup analysis was one of a small number of
hypotheses tested, whether the difference was sug-
gested by comparisons within or between studies, the
consistency of the difference, and the existence of
indirect evidence that supports the difference. Applica-
tion of these guidelines will assist clinicians in making
decisions regarding whether to base a treatment deci-
sion on overall results or on the results of a subgroup
analysis.
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Clinicians faced with a treatment decision about a
particular patient are interested in the evidence that
pertains most directly to that individual. Thus, it is
frequently of interest to examine a particular category
of participants in a clinical trial: for example, the
women, those in a certain age group, or those with a
specific pattern of disease. In observational studies,
these examinations, or subgroup analyses, are routine.
They are also frequently encountered in reports of clin-
ical trials. In a survey of 45 clinical trials reported in
three leading medical journals, Pocock and colleagues
(1) found at least one subgroup analysis that compared
the response to treatment in different categories of pa-
tients in 51% of the reports.

The results of subgroup analyses have had major
effects, sometimes harmful, on treatment recommenda-
tions. For example, many patients with suspected myo-
cardial infarction who could have benefited from throm-
bolytic therapy may not have received this trcatment as
a result of subgroup analyses based on the duration of
symptoms before treatment (2) and the conclusion that
streptokinase was only effective in patients treated
within 6 hours after the onset of pain (3, 4). A later,
larger trial showed that streptokinase was effective up
to 24 hours after the onset of symptoms (5).

Conclusions based on subgroup analyses can have
adverse consequences both when a particular category
of patients is denied effective treatment (a ‘‘false-nega-
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tive" conclusion), as in the above example, and when
ineffective or even harmful treatment is given to a sub-
group of patients (a ‘‘false-positive’’ conclusion). Be-
cause of these risks and their frequency, the appropri-
ateness of drawing conclusions from subgroup analyses
has been challenged (6, 7), and it has been argued that
treatment recommendations based on subgroup analyses
may do more harm than good. This hypothesis is cur-
rently being tested empirically by comparing treatment
recommendations generated from early trials of new
treatments based on subgroup analyses with treatment
recommendations that would have been made had sub-
group analyses been ignored, assessing ‘“‘whether they
lead to more patients receiving treatments that are
worthwhile and fewer patients receiving treatments that
are not.”" (Sackett DL. Personal communication.)

Although we agree that subgroup analyses are poten-
tially misleading and that there is a tendency to over-
emphasize the results of subgroup analyses, in this pa-
per we will present an alternative point of view. The
essence of our argument is that subgroup analysis is
hoth informative and potentially misleading. Rather
than arguing for or against the merits of subgroup anal-
ysis, we will present guidelines in this article for decid-
ing how believable the results of subgroup analyses are
and, consequently, when to act on recommendations
based on subgroup analyses and when to ignore them.

Our discussion will focus on randomized trials and
meta-analyses of randomized trials (systematic over-
views), although the same principles apply to any other
research design. The assumption from which we start in
this discussion is that the underlying design of the stud-
ies being examined is sound. For treatment trials, sound
design involves elements of randomization, masking,
completeness of follow-up, and other strategies for min-
imizing both random error and bias (8, 9). If the study
is not sound, the overall conclusion is suspect, let alone
conclusions based on subgroup analyses.

Even given a rigorous study design, the extent to
which subgroup analyses should be done—or be-
lieved—is highly controversial. Although there are
those who ignore scientific principles in the subgroup
analyses they undertake and report, go on fishing expe-
ditions, and indulge in data-dredging exercises (10, 11),
there are also those who mix apples and oranges, drown
in the data they pool (12), reach meaningless conclu-
sions about “‘average’ effects (13), and fail to detect
clinically important effects because of the heterogeneity
of their study groups (14). Although the debate between
these two camps is entertaining and can lead to some
useful insights, practical advice for assessing the
strength of inferences based on subgroup analyses is
also important. In providing such advice, we will build
on criteria that have been suggested by other authors
(15-18).



Table 1. Guidelines for Deciding whether Apparent Dif-
ferences in Subgroup Response Are Real

. Is the magnitude of the difference clinically important?

. Was the difference statistically significant?

. Did the hypothesis precede rather than follow the analysis?

. Was the subgroup analysis one of a small number of
hypotheses tested?

5. Was the difference suggested by comparisons within rather
than between studies?

. Was the difference consistent across studies?

. Is there indirect evidence that supports the hypothesized
difference?
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Our criteria are summarized in Table | and are de-
scribed in detail below. An example of a hypothesized
difference in subgroup response and the extent to which
it meets our proposed criteria is given in Table 2. We
will use this example in the text to highlight some of the
relevant issues. It should be noted from the outset that
our criteria, like any guidelines for making an inference,
do not provide hard and fast rules; they simply repre-
sent an organized approach to making reasonable judg-
ments.

Guidelines for Deciding whether Apparent Differences in
Subgroup Response Are Real

Conceptual Approach Underlying the Guidelines

Subgroup analyses of data from randomized trials or
meta-analyses are undertaken to identify “‘effect modi-
fiers,”” characteristics of the patients or treatment that
modify the effect of the intervention under study. Sta-
tistical “‘interactions™ in a set of data are measured to
estimate effect modification (an epidemiologic concept)
in the population represented by the study sample (19).
The term interaction is sometimes (but not in this pa-
per) also used to refer to the concept of synergism or
antagonism, a biologic mechanism of action in which
the combined effect of two or more factors differs from
the sum of their solitary effects (20). In the following
discussion, we use the term ‘‘interaction’ to refer to
situations in which the observed effectiveness of an
intervention differs across subgroups.

The premise underlying the hypothesis that subgroup
analyses do more harm than good is that “‘unanticipated
qualitative interactions’’ are unusual and, when appar-
ent unanticipated interactions are discovered, they are

usually artifacts due to chance. The same position can
be taken with respect to apparent differences between
treatment effects in drugs of a single class; this would
suggest that the best estimate of the effect of any one
drug is the overall effect of the group of drugs across all
methodologically adequate, randomized, controlled tri-
als (21). There is confusion, however, over the funda-
mental distinction between a ‘‘qualitative interaction’
and a ‘‘quantitative interaction’ (22). Although a strict
definition of a qualitative interaction would mean that
there is a sign reversal (22) (meaning that the treatment
is beneficial in one group and harmful in another), it is
also used to refer to a substantial quantitative interac-
tion (that is, a difference in the magnitude of effect that
is clinically important). From a clinical point of view, it
is important to recognize that a substantial quantitative
interaction can be as important as a qualitative interac-
tion. For instance, the side effects of a treatment may
be such that it is worth administering to patients in
whom the magnitude of the treatment effect is large, but
not to patients in whom the treatment effect is small or
moderate.

Having said this, it is still reasonable to distinguish
between interactions that are clinically trivial and those
that are clinically important. The former can be ignored,
and that is the point at which our guidelines begin.
Once the clinician has decided that an interaction, if
real, would be important, the subsequent six criteria
can be used to help decide on the credibility of the
proposed subgroup difference. Three of the criteria (2 to
4) are markers of the potential for random error (that is,
mistakes due to chance); one (criterion 5) is a marker of
the potential for systematic errors; and the last two
address the consistency of the evidence (criterion 6) and
its biologic plausibility (criterion 7).

The Guidelines

I. Is the Magnitude of the Difference Clinically
Important?

Given the extent of biologic variability, it would be
surprising not to find interactions between treatment
effects and various other factors. Differences in the
effect of treatment are likely to be associated with dif-
ferences in patient characteristics, differences in the
administration of the treatment (such as different sur-
geons or different drug doses), and differences in the
primary end point. However, it is only when these

Table 2. An Example of a Hypothesized Difference in Subgroup Response: Digoxin is More Effective in Patients with

More Severe Heart Failure

Criterion

Magnitude of the difference
Statistical significance
A priori hypothesis

W P -—

Result

Clinically important differentiation between responders and nonresponders.
Yes, P values were less than 0.01 in both studies.
Yes, the hypothesis was suggested by results of one study and tested in a

second study.

4, Small number of hypotheses

If viewed as severity of heart failure, yes. If viewed as components (for

example, heart size, third heart sound, ejection fraction), no.

i

Within-study comparisons
6. Consistency across studies

Yes, in two crossover trials, comparisons were within studies.
Yes, in two studies tested. However, it was not tested in other trials, and

this is necessary for confirmation.

7. Indirect evidence

Yes, biologically plausible that clinically important response is restricted to

those with more severe heart failure.
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differences or interactions are practically important—
that is, when they are large enough that they would lead
to different clinical decisions for different subgroups—
that there is any point in considering them further.

As a rule, the larger the difference between the effect
in a particular subgroup (or with a particular drug or
dosage of drug) and the overall effect, the more plausi-
ble it is that the difference is real. At the same time, as
the difference in effect size between the anomalous sub-
group and the remainder of the patients becomes larger,
the clinical importance of the difference increases.

Unfortunately, if the results of subgroup analysis are
only reported for the subgroups within which sizable
treatment differences are found, the estimates of the
magnitude of the interaction will be biased because only
the extreme estimates are reported (23). This is analo-
gous to regression to the mean (the tendency for ex-
treme findings, such as unusually high blood pressure
values, to revert toward less extreme values on re-
peated examination) (24). Moreover, when the overall
treatment effect is modest, there is a good chance of
finding a ‘“‘qualitative’” interaction even when only two
subgroups are examined (17).

When they report the results of subgroup analyses,
authors should make clear to readers how many com-
parisons were made and how it was decided which ones
to report. Given current publication practices, however,
were the reader simply to conclude that a reported
interaction is real just because it is large, he or she
would be wrong more often than right. Thus, having
determined that an interaction, if real, is large enough
to be important, it is essential to consider other criteria.

2. Was the Difference Statistically Significant?

Any large data set has, imbedded within it, a certain
number of apparent, but in fact spurious, interactions.
Statistical tests of significance can be used to assess the
likelihood that a given interaction might have arisen due
to chance alone. For example, Yusuf and colleagues
(25), in an overview of randomized trials of beta blocker
treatment for myocardial infarction, compared agents
with and without intrinsic sympathomimetic activity
(ISA) and found that the agents without ISA seemed to
produce a larger effect than the ones with it. This dif-
ference was significant at the 0.01 level, indicating that
it was unlikely to have occurred due to chance alone.
Yet, two subsequent trials, one of an agent with ISA
and one of an agent without ISA, showed the opposite
result and, when added to the overview, eliminated the
statistical significance of the interaction (26). There are
several possible explanations for this, including chance.
In other words, although events that occur one out of a
hundred times might be considered rare, they do occur.
Of course, the lower a P value is, the less likely it is
that an observed interaction can be explained by chance
alone.

Conversely, just as it is possible to observe spurious
interactions, chance is likely to lead to some studies
(among a large group) in which even a real interaction is
not apparent. This is particularly true if the studies are
small and the clinical end points of interest are infre-
quent. In this case, the power to detect an interaction
would be low. Because subgroup analyses always in-

clude fewer patients than does the overall analysis, they
carry a greater risk for making a type II error—falsely
concluding that there is no difference.

Statistical techniques for conducting subgroup analy-
sis include the Breslow-Day technique and regression
approaches (27). With the Breslow-Day technique and
similar approaches (28), it is possible to use a test for
homogeneity to estimate the probability that an ob-
served interaction might have arisen due to chance
alone. More commonly, authors simply conduct a num-
ber of comparisons for different subgroups and apply
chi-square tests or f-tests without formally testing for
interactions.

This practice, together with only reporting subgroups
within which sizable treatment differences are found,
can lead to an overestimate of the significance as well
as the size of the difference. One way of adjusting for
this bias is to use Bayes or empiric Bayes methods,
which shrink the extreme estimates toward the overall
estimate of treatment effect (23, 29, 30). Both a point
estimate of the magnitude of the difference and a con-
fidence interval can be obtained using these approaches.

Regression models, such as logistic regression (28),
can also be used for analysis of interactions if the in-
teractions are modeled by product terms. This approach
allows for testing the significance of an interaction while
controlling for other factors. If there are many subgroup
factors, however, the number of product terms neces-
sary for an adequate modeling of the interactions may
be greater than the number of observations; an analysis
of the interactions is then impossible. An additional
problem with this approach is deciding which of many
possible interaction terms to enter into the model as
well as the potential for bias in their selection.

Methods for selecting factors to include have been
proposed (31) in addition to other approaches to sub-
group analysis (15, 18, 23, 27). Although it is not im-
portant for clinical readers to understand the details of
these approaches, it is important to understand the con-
cepts of statistical significance and power in subgroup
analysis. Statistical analysis is a useful tool for assess-
ing whether an observed interaction might have been
due to chance alone, but it is not a substitute for clin-
ical judgment.

3. Did the Hypothesis Precede Rather than Follow the
Analysis?

Surveying patterns of data that suggest possible inter-
actions may, in fact, prompt the analysis that ‘‘con-
firms'' the existence of a possible interaction. As a
result, the credibility of any apparent interaction that
arises out of post-hoc exploration of a data set is ques-
tionable.

An example of this was the apparent finding that
aspirin had a beneficial effect in preventing stroke in
men with cerebrovascular disease but not in women
(32). This interaction, which was ‘‘discovered’ in the
first large trial of aspirin in patients with transient ische-
mic attacks, was subsequently found, in other studies
and in a meta-analysis summarizing these studies (33),
to be spurious. This finding, like the streptokinase ex-
ample, is an example of a *‘false negative’ subgroup
analysis. In this instance, many physicians withheld
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aspirin for women with cerebrovascular disease for a
considerable period.

Whether a hypothesis preceded analysis of a data set
is not necessarily a black or white issue. At one ex-
treme, unexpected results might be clearly responsible
for generating a new hypothesis. At the other extreme,
a subgroup analysis might be clearly planned for in a
study protocol to test a hypothesis suggested by previ-
ous research. Between these two extremes lie a range
of possibilities, and the extent to which a hypothesis
arose before, during, or after the data were collected
and analyzed is frequently not clear. For example, if
data monitoring detects a seeming interaction in a long-
term study. it may be possible to state the hypothesis
and then test it in future analyses (34). This technique
may be most appropriate if additional study patients are
still to be accrued.

Although post-hoc analyses will sometimes vyield
plausible results, they should generally be viewed as
hypothesis-generating exercises rather than as hypothe-
sis testing. Decisions about which analyses to do and
which ones to report are much more likely to be data
driven with post-hoc analyses and thereby more likely
to be spurious. On the other hand, when a hypothesis
has been clearly and unequivocally suggested by a dif-
ferent data set, it moves from a hypothesis-generating
toward a hypothesis-testing framework. In Bayesian
terms, the higher prior probability increases the poste-
rior probability (after the subgroup analysis) of an in-
teraction being real (29, 30).

If a hypothesis about an interaction has arisen from
exploration of a data set from a study, then an argu-
ment can be made for excluding that study from a
meta-analysis in which the hypothesis is tested. Cer-
tainly, if the hypothesis is confirmed in a meta-analysis
that excludes data from the study that originally sug-
gested the interaction, the inference rests on stronger
ground. If the statistical significance of the interaction
disappears or is substantially weakened when data from
the original study are excluded, the strength of infer-
ence is reduced.

When considering post-hoc analyses, it should be
kept in mind that they are more susceptible to bias as
well as to spurious results. The reader should be par-
ticularly cautious about analysis of subgroups of pa-
tients that are delineated by variables measured after
baseline, even if the hypothesis preceded the analysis.
If the treatment can influence whether a participant
becomes a member of a particular subgroup, the con-
clusions of the analysis are open to bias. For instance,
one might hypothesize that compliers will do better if
they are in the treatment group than in the control
group but that noncompliers will do equally well in both
groups. The reasons for compliance and noncompli-
ance, however, probably differ in the treatment and
control groups. As a result, in this comparison, the
advantages of randomization (and with it, the validity of
the analysis) are lost.

An example of the evolution of a hypothesis concern-
ing responsive subgroups comes from the investigation
of the efficacy of digoxin in preventing clinically impor-
tant exacerbations of heart failure in heart-failure pa-
tients in sinus rhythm (see Table 2). Lee and colleagues
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(35) conducted a crossover study in which they found
the drug to be effective. They did a regression analysis
that suggested that only one factor—the presence of a
third heart sound—predicted who would benefit from
the drug. Only patients with a third heart sound were
better off while taking digoxin. The hypothesis that this
might be one of the predictors appears to have preceded
the study. Nevertheless, on the basis of the foregoing
discussion, the investigators were perhaps too ready to
conclude that digoxin use in heart-failure patients in
sinus rhythm should be restricted to those with a third
heart sound.

4. Was the Subgroup Analysis One of a Small Number
of Hypotheses Tested?

Post-hoc hypotheses based on subgroup analysis of-
ten arise from exploration of a data set in which many
such hypotheses are considered. The greater the num-
ber of hypotheses tested, the greater the number of
interactions that will be discovered by chance. Even if
investigators have clearly specified their hypotheses in
advance, the strength of inference associated with the
apparent confirmation of any single hypothesis will de-
crease if it is one of a large number that have been
tested. In their regression analysis, Lee and colleagues
(35) included 16 variables. This relatively large number
increases the level of skepticism with which the pres-
ence of a third heart sound as an important predictor of
response to digoxin should be viewed.

Unfortunately, as noted above, the reader may not
always be sure about the number of possible interac-
tions that were tested. If the investigators chose to
withhold this information, despite admonitions not to do
so, and reported only those that were ‘‘significant,” the
reader is likely to be misled.

The Beta-Blocker Heart Attack Trial (BHAT) ran-
domized approximately 4000 patients to propranolol or
placebo after a myocardial infarction (36). Subse-
quently, 146 subgroup comparisons were done (37). Al-
though the estimated effects of the treatment clustered
around the overall effect, the effect in some small sub-
groups appeared to be either much more effective or
ineffective. The overall pattern, which approximated a
“normal’’ distribution, would suggest that most of the
observed difference in effect among the various sub-
groups was due to sampling error rather than to true
interactions.

Another way to consider this is in terms of the effect
of multiple comparisons on P values. The more hypoth-
eses that are tested, the more likely it is to make a type
I error, that is, to reject one of the null hypotheses even
if all are actually true. Assuming that no true differ-
ences exist, if 100 different comparisons are made, five
can be expected to yield a P value of 0.05 or less by
chance alone. In this situation, a more appropriate anal-
ysis would account for the number of subgroups, their
relation to other subgroups, and the size of the effect
within subgroups and overall (23).

5. Was the Difference Suggested by Comparisons
within Rather than between Studies?

Making inferences about different effect sizes in dif-
ferent groups on the basis of between-study differences
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entails a high risk compared with inferences made on
the basis of within-study differences. For instance, one
would be reluctant to conclude that propranolol results
in a different magnitude of risk reduction for death after
myocardial infarction than does metoprolol on the basis
of data from two studies, one that compared proprano-
lol with placebo and another that compared metoprolol
with placebo. This could be thought of as an indirect
comparison. A direct comparison would involve, in a
single study, patients being randomized to receive ei-
ther placebo, propranolol, or metoprolol. If, in such a
direct comparison, clinically important and statistically
significant differences in magnitude of effect between
the two active treatments were demonstrated, the infer-
ence would be quite strong.

An example that illustrates this point comes from an
overview examining the effectiveness of prophylaxis for
gastrointestinal bleeding in critically ill patients (38).
Histamine,- receptor (H,) antagonists and antacids,
when individually compared with placebo, had compa-
rable effects in reducing overt bleeding (common odds
ratios of 0.35 in both cases). In contrast, direct com-
parison from studies in which patients were randomized
to receive H, antagonists or antacids have shown a
statistically significantly greater reduction in bleeding
with the latter (common odds ratio, 0.56).

The reason that inference on the basis of between-
study differences is so potentially misleading is that
there may be a myriad of factors, aside from the most
salient difference, which is the basis of the inference
being made, that could explain the interaction. For in-
stance, aside from differences in the specific drugs used,
different populations (varying in risk for adverse out-
comes, for example), varying degrees of co-interven-
tion, or varying criteria for gastrointestinal bleeding
each could explain the results. These differences would
not be plausible explanations if the inference were
based on within-study differences in randomized trials
in which populations studied. control of co-intervention,
and outcome criteria were all identical.

Stated simply, between-study inferences are based on
comparisons between noncomparable groups: even
when all of the individual studies were randomized.
patients were not randomized to one study or another.
Clinical decisions based on between-study comparisons
should be made cautiously, if at all. As a rule, infer-
ences based on between-study comparisons should be
viewed as preliminary and as requiring confirmation
from direct within-study comparison. This is true
whether the between-study comparison has to do with
different groups or different interventions.

6. Was the Difference Consistent across Studies?

A hypothesis concerning differential response in a
subgroup of patients may be generated by examination
of data from a single study. The interaction becomes far
more credible if it is also found in other studies. The
extent to which a comprehensive scientific overview of
the relevant literature finds an interaction to be consis-
tently present is probably the best single index as to
whether it should be believed.

In other words, the replication of an interaction in
independent, unbiased studies provides strong support

for its believability. On the other hand, there are two
reasons (o be cautious in applying this criterion. The
first goes back to sample size. Because subgroup anal-
yses often include small numbers of patients, the results
tend to be imprecise and the extent to which results
from different studies are consistent can be uncertain.
The second caution relates to making between-study
comparisons. For the same reason that it is risky to
base conclusions on between-study differences, it is
only reasonable to expect variation in the results of
trials of the same therapy. due to differences in the
study populations, the interventions, the outcomes, and
the study designs, as well as the play of chance. Thus,
when assessing the consistency of results, it is impor-
tant to consider both the power of the comparisons (or
their statistical certainty) and other differences between
studies that might influence the results.

The hypothesis concerning a third heart sound as a
predictor of response to digoxin in heart-failure patients
in sinus rhythm was tested in a second crossover, ran-
domized trial (39). The presence of a third heart sound
proved a weaker predictor than in the initial study,
although its association with response to digoxin did
reach conventional levels of statistical significance.
However. a number of factors that, like a third heart
sound, reflect greater severity of heart failure, were
associated with response to digoxin. Thus, support for a
more general hypothesis. that response is related to the
severity of heart failure, was provided by the second
study.

Other studies have examined the efficacy of digoxin
in heart-failure patients in sinus rhythm, and these have
been summarized in a meta-analysis (40). Unfortu-
nately. none of these studies has conducted subgroup
analyses addressing the issue of differential response
according to different severity of heart failure. Had
these analyses been done in the other studies, the hy-
pothesis would likely have been confirmed or refuted
with substantially greater confidence. As it is, we would
be inclined to view the conclusion as tentative: the
strength of inference is only moderate.

7. Is There Indirect Evidence to Support the
Hypothesized Difference?

We are generally more ready to believe a hypothe-
sized interaction if indirect evidence (such as from an-
imal studies or analogous situations in human biology)
makes the interaction more plausible. That is, to the
extent that a hypothesis is consistent with our current
understanding of the biologic mechanisms of disease,
we are more likely to believe it. Such understanding
comes from three types of indirect evidence: from stud-
ies of different populations (including animal studies);
from observations of interactions for similar interven-
tions: and from results of studies of other, related out-
comes (particularly intermediary outcomes).

The extent to which indirect evidence strengthens an
inference about a hypothesized interaction varies sub-
stantially. In general. evidence from intermediary out-
comes is the strongest type of indirect evidence. Evi-
dence of differences in immune response, for example,
can provide strong support for a conclusion that there is
an important difference in the clinical effectiveness of a
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vaccine depending on age (41). Conversely, indirect ev-
idence from related interventions is generally the weak-
est type of indirect evidence (for example, evidence of
a similar interaction with other vaccines).

The human mind is sufficiently fertile that there is no
shortage of biologically plausible explanations or indi-
rect evidence to support almost any observation. Be-
cause of this, it can sometimes be quite difficult to judge
how much weight to give to indirect evidence. One
quite ironic example of biologic evidence supporting a
possible interaction mentioned earlier in this paper
comes from an early trial that suggested that aspirin
reduced stroke in men but not in women (32). This
finding stimulated animal research that provided a bio-
logic basis for the interaction (42). Ultimately, however,
it turned out that aspirin was as effective in women as
in men (33).

Conclusion

Criteria suggested for determining whether to believe
hypotheses concerning causation have proved helpful in
understanding controversial causal claims (2, 43). The
criteria we have suggested should be useful in deciding
when to believe an analysis that suggests a differential
response to treatment in a definable subgroup of pa-
tients or with a particular drug or drug dose. At one
extreme are relatively small, marginally significant in-
teractions based on between-study differences or gener-
ated for the first time by post-hoc exploration of a
single data set. At the other extreme are large. clinically
important interactions, originally suggested by both in-
direct evidence and direct evidence and independently
tested in either a new trial or in a meta-analysis in
which the possibility of the interaction being due to the
play of chance is found to be low. The former should be
viewed with great skepticism: the latter can form the
basis of clinical policy. The strength of inference ranges
from one end of this spectrum to the other. In instances
when criteria are partially satisfied, further information,
either in the form of new primary studies or meta-
analysis, will often be desirable to strengthen the infer-
ence (one way or the other) to the point at which it can
be confidently applied as clinical policy.

Decisions regarding how much effort to put into ac-
cumulating more evidence and what clinical action to
take will depend on the potential benefits, risks, and
costs involved. Decision thresholds, both for undertak-
ing further research and for taking a clinical action,
vary greatly. For problems with large potential benefits
and small risks and costs, we are generally willing to
accept lower standards of evidence than for problems
with smaller potential benefits or larger risks or costs.

The decision of whether to base clinical practice on
the average estimate of effect from the overall analysis
(the more robust finding) or on a subgroup analysis
(which more closely reflects the specific clinical situa-
tion at hand) hinges on the criteria described above. It
is tempting to take one extreme or the other: to base
decisions either on the overall estimate of effect or on
the most applicable subgroup analysis. However, a
thoughtful approach based on these criteria is more
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likely to result in the most benefit and the least harm
for our patients.
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